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This final report summarizes accomplishments in two areas of uncer- 
tainty quantification and computational probability. 

1    Methods for modeling and integrating different types of 
uncertainty 

1.1     Problem formulation and issues 

Uncertainty quantification refers to a broad set of techniques for understand- 
ing the impact of uncertainties in complicated mechanical and physical sys- 
tems. In this context "uncertainty" can take on many meanings. Aleatoric 
uncertainty refers to inherent uncertainty due to stochastic or probabilistic 
variability. This type of uncertainty is irreducible in that there will always 
be positive variance since the underlying variables are truly random. Epis- 
temic uncertainty refers to limited knowledge we may have about the model 
or system. This type of uncertainty is reducible in that if we have more infor- 
mation, e.g., take more measurements, then this type of uncertainty can be 
reduced. For many problems where uncertainty quantification is important, 
the acquisition of data is difficult or expensive. The epistemic uncertainty 
cannot be removed entirely, and so one needs modeling and computational 
techniques which can also accommodate this form of uncertainty. 

However, in most applications it is (perhaps implicitly) assumed that 
epistemic uncertainty can be modeled by aleatoric uncertainty. One reason 
is purely based on convenience in that, at least as they have been developed 
to date, most computational techniques (e.g., polynomial chaos and Monte 
Carlo) are based on the assumption that the user can identify some "ap- 
propriate" distribution for each uncertain aspect of the system, regardless 
of the type of uncertainty, aleatoric or epistemic. If one is interested in just 
basic qualitative properties of the system then this may not be a central 
issue, since virtually any model of uncertainty will give information on the 
sensitivities of the system. However, when the intended use of uncertainty 
quantification is for regulatory assessment or some other application where 
performance measures are sensitive to distributional assumptions, the issue 
becomes much more important, and one should carefully distinguish how 
one accounts for the two types of uncertainty. 

Hence important issues are: (i) how should one model uncertainties that 
are not of the aleatoric type, and (ii) can one work with the resulting for- 
mulation from a numerical perspective. 



1.2     Results and key findings 

In the paper [1] we develop an approach that (i) logically distinguishes those 
aspects of uncertainty that are treated as stochastic variability from other 
forms of uncertainty, (ii) in cases where a stochastic model is theoretically 
valid but for which determination of the distribution is not practical, gives 
bounds for performance measures that are valid for explicitly identified fam- 
ilies of distributions, and (iii) is computationally feasible if ordinary uncer- 
tainty propagation is feasible. The different forms of uncertainty that are 
covered by the formulation include: (a) aleatoric with known distribution; 
(b) aleatoric with partly known distribution (mingled aleatoric and epis- 
temic); (c) epistemic for which one is willing to model by a family of aleatoric 
uncertainties, and (d) epistemic where one is only willing to place bounds 
on the uncertainties. 

Suppose that random variables with a known distribution will take val- 
ues in a Polish space X. Variables whose distribution is not known or are 
otherwise of the epistemic variety take values in the space y. Let the per- 
formance measure of interest for some given problem is assumed to be of the 
form 

/    / F(x,y)>y{dy)n(dx), 
Jx Jy 

where /x (resp., 7) is a probability measure on X (resp., y). Ii X and Y 
are independent random variables with distributions fi and 7, then F(X, Y) 
represents both the performance measure (e.g., a second moment) as well 
as the underlying physical or mechanical system that maps these aleatoric 
and epistemic inputs into outputs. 

It is known that risk-sensitive performance measures can be used to 
produce performance bounds that are robust with respect to the underlying 
distributions. The standard risk-sensitive performance measure is 

Ac = ilog/   ( ecF^yh{dy)ß{dx).' 

Neither of these measures differentiate the variables according to type (aleatoric 
or epistemic) and given that the performance measure of interest is actually 
F, the use of a risk-sensitive version of the cost is not well motivated for 
the aleatoric variables. Indeed, use of this measure will give bounds that 
are robust with respect to variations on a distribution that is known, and 
obviously such bounds will not be as tight as possible. 

In [1] two hybrid risk-sensitive measures are introduced, as well as vari- 
ations.   To simplify we mention only the theory developed for the (more 



useful) form 

Al = I log ( efx^'M^rtdy). 
C        Jy 

Using the relative entropy representation for exponential integrals, it follows 
that for any distribution 9(dy) 

f  f F(x,y)n(dx)6(dy) < -R(6(dy) ||7(dy)) + A*. 
Jy Jx c 

This gives a bound on the performance measure for an arbitrary distribution 
on Y, but with the distribution on X equal to the known true distribution. 
The distributions thus play very different roles. In particular, we think of 7 
as a nominal distribution of Y, which should be distinguished from a pos- 
sible true distribution. The risk sensitive functional A*, whose numerical 
evaluation can be carried out by a variety of methods (in [1] we use poly- 
nomial chaos), is based on the nominal distribution. Through the relative 
entropy duality, it yield various bounds (depending on c) on a families of 
distributions, with the relative entropy distance the key metric. 

Suppose that a bound on performance over a specific family of distri- 
butions is needed. Let R* denote the maximum of relative entropy with 
respect to the nominal model over this family that we wish to allow. Then 
the tightest possible bound is obtained by minimizing 

Al + -Ä* 
c 

over c > 0. Thus given a prescribed uncertainty in the epistemic variables, 
one can compute a bound on the performance over all distributions in the 
family and which holds with equality for at least one.   This optimizing c, 
which exists and is unique, can be computed using the same techniques used 
to compute the performance measure itself. We show in [1] that this function 
has only one local minimum over c G (0,00], and thus the global minimum 
is easy to compute. 

In [1] examples of various types and numerical data is presented, as 
well as the corresponding theory where all that is assumed regarding the 
epistemic variables is that they are constrained to some given set. The use of 
polynomial chaos methods for the evaluation of the risk-sensitive functionals 
is developed, and explicit relative entropy distances for common families of 
distributions are listed. 

Two additional papers on this topic are in preparation, both with Kenny 
Chowdhary, a graduate student in the department. One is concerned with 
optimization in the presence of both epistemic and aleatoric uncertainties, 
and the second is concerned with estimation in this same framework. 



2    Computational methods for rare event problems 

2.1 Problem formulation and issues 

There is significant interest in the application of uncertainty quantification to 
problems with small probabilities (rare events). For example, it is a research 
focus for the SAMSI/Sandia Summer School on Uncertainty Quantification 
in 2011. Though these probabilities may be small, they are often critical 
measures of system performance and one needs reasonably reliable numerical 
methods. Unfortunately, standard numerical schemes are not at all reliable 
for problems with rare events. 

This part of the research project was concerned with developing efficient 
Monte Carlo algorithms for rare event simulation and the associated large 
deviations theory. There are two methods currently in use. One is based 
on simulating according to a different distribution and then correcting for 
any induced bias via the likelihood ratio (importance sampling). The key 
question here is how to select the new sampling distribution. The second 
method simulates a branching process, i.e., collection of particles that can 
split according to certain rules to form new particles, each of which behaves 
like the original particle or process. The splitting rules are designed to 
make the rare event likely for at least one of the descendent particles, and 
the estimator is the ratio of number of particles for which the rare outcome 
is observed to the total number of descendents. The key question here 
is what should trigger a split and, given that a split occurs, the number 
of descendents. Most of the literature on these methods features schemes 
based on heuristic design, with little or no analysis. However, the design 
problem with both methods is subtle, and reasonable looking schemes can 
perform quite poorly. Indeed, simulations based on improperly designed 
schemes could be highly misleading. 

A second class of problems considers the numerical approximation of the 
invariant distribution for stochastic systems with multiple metastable states 
using the occupation measure of a related Markov process. Moving from 
one metastable state to another is a rare event, and its treatment is the key 
question in the design of efficient Monte Carlo schemes. There are many 
ad hoc algorithms available. However, these algorithms do not always work 
well and have to be applied with some care. 

2.2 Results and key findings 

In prior work we demonstrated that the design of a reliable and high per- 
forming important sampling scheme would follow if one could construct a 



subsolution to a related Hamilton-Jacobi-Bellman equation (a partial dif- 
ferential equation). Moreover, we showed that the existence of such a sub- 
solution is in some sense necessary. The paper [4] considers the analysis 
of the "weighted-serve-the-longer-queue" policy. Such service policies are 
common, and in particular a variant is frequently used in wireless com- 
munication. The goal of the importance sampling scheme is to accurately 
estimate probabilities associated with buffer overflows and delays, which are 
critical performance measures. The model is fairly complex, since the policy 
introduces a kind of discontinuous behavior into the stochastic evolution. 
We showed how the approach based on subsolutions to a related Hamilton- 
Jacobi-Bellman equation developed in previous papers could be adapted to 
deal with such complicated process dynamics. 

The paper [2] analyzes a number of branching type schemes, including 
RESTART (REpetitive Simulation Trials After Reaching Thresholds) and 
DPR (Direct Probability Redistribution). It is established that the design of 
a stable (namely, controlled number of particles) and asymptotically optimal 
(namely, tightly controlled variance) splitting algorithms can be achieved by 
constructing suitable viscosity subsolutions to a Hamilton-Jacobi-Bellman 
(HJB) equation. This HJB equation is in fact the same one in importance 
sampling analysis. This is a useful theoretical result, since it indicates that 
the construction of subsolutions is in any case a central aspect to solving 
the numerical problem. 

A much more complex algorithm can be based on what is called an in- 
teracting particle system. The paper [3] provides the first rigorous analysis 
of the performance of this class of algorithms in the small probability limit. 
Owing to the complexities of the algorithm, the analysis is limited to di- 
mension one. However, the results support some of the claims that have 
been made concerning these algorithms (but based only on numerical evi- 
dence), and in particular that, at least for one dimensional problems, they 
are less sensitive to the details of the underlying distributions than compet- 
ing schemes. 

The paper [5] considers the problem of approximating stationary distri- 
butions of a Markov chain by simulation. Our initial goal was to use large 
deviation ideas to choose design parameters in an existing scheme known as 
parallel tempering. Parallel tempering (also known as replica exchange sam- 
pling) is a standard method for simulating complex systems, and is used in 
many commercial software packages. In this algorithm simulations are con- 
ducted in parallel for a family of Markov chains indexed by a "temperature" 
parameter, and the key improvement over standard Monte Carlo is a swap 
mechanism that exchanges configurations between these parallel simulations 



at a given rate. The mechanism is designed to allow the low temperature 
system to escape from deep local energy minima where it might otherwise be 
trapped, via those swaps with the higher temperature components. Based 
on large deviation theory, we have argued that the rate of convergence of 
the empirical measure is a monotone increasing function of the swap rate. 
This suggests that one should raise the swap frequency in order to improve 
efficiency, but this is eventually counter-productive since eventually most 
of the computational effort is directed towards swapping and little towards 
moving the process dynamics. However, it turns out that one can construct 
a simulation scheme that is equivalent to the limit of the parallel tempering 
schemes in the sense of distributions, but which involves no swapping at 
all. With this scheme, which we call infinite swapping (INS), the effect of 
the swapping is captured by a collection of weights that influence both the 
dynamics and the empirical measure. 

While the infinite swapping scheme optimizes the convergence rate as 
described above, it has practical limitations in implementation due to the 
complexity of the weights when the number of temperatures is large (>7). 
Complex problems in often involve scores of temperatures, and so it was 
critical to overcome this limitation. We have developed an approximation 
to the full infinite swapping which is based on alternating between partial 
infinite swapping (PINS) algorithms, which can be shown to approximate 
(theoretically and practically) the INS scheme. The mathematical theory for 
the INS and PINS is developed in [5]. Numerical studies on fairly complex 
Lennard-Jones systems (very challenging benchmark problems from chem- 
istry) have been conducted. Improvements of three orders of magnitude 
in performance over conventional parallel tempering were observed at an 
increased computational cost of 5-15%. 
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